KATWA COLLEGE SEM-VI (HONOURS) INTERNAL ASSESSMENT EXAMINATION-2023 SUBJECT: PHYSICS PAPER: DSE-3 NUCLEAR PHYSICS

Time: 1h

Answer any five questions:

- 1. Assuming the constancy of nuclear charge density show that radius of a nucleus is proportional ta $A^{1/3}$ where A is mass number of the nucleus.
- 2. Predict the ground state and parity of $\frac{41}{20}Ca$.
- 3. Cite two examples of doubly magic nuclei. What is the origin of $p_{3/2}$ and $p_{1/2}$ nuclear energy levels in the shell model?
- 4. Show the mass difference of two 'mirror nuclei' of odd A and with N and Z differing by one unit is given by M_p — M_n + $a_c A^{2/3}$.
- 5. What is a nuclear reaction? What are the different types of nuclear reactions?
- 6. What do you mean by Q-value and threshold energy of a nuclear reaction?
- 7. Write down about Cerenkov radiation, pair production and stopping power of a medium.
- 8. Calculate the energy generated in M eV when 0.1 kg of ⁷Li is converted into ⁴He by proton bombardment. [Given masses of ⁷Li, ⁴He and ¹H in u are 7.0183, 4.0040 and 1.0081 respectively]

KATWA COLLEGE SEM-VI (HONOURS) INTERNAL ASSESSMENT EXAMINATION-2023 SUBJECT: PHYSICS PAPER: DSE-3 NUCLEAR PHYSICS

Time: 1h

Answer any five questions:

- 1. Assuming the constancy of nuclear charge density show that radius of a nucleus is proportional ta $A^{1/3}$ where A is mass number of the nucleus.
- 2. Predict the ground state and parity of $\frac{41}{20}Ca$.
- 3. Cite two examples of doubly magic nuclei. What is the origin of $p_{3/2}$ and $p_{1/2}$ nuclear energy levels in the shell model?
- 4. Show the mass difference of two 'mirror nuclei' of odd A and with N and Z differing by one unit is given by M_p — M_n + $a_c A^{2/3}$.
- 5. What is a nuclear reaction? What are the different types of nuclear reactions?
- 6. What do you mean by Q-value and threshold energy of a nuclear reaction?
- 7. Write down about Cerenkov radiation, pair production and stopping power of a medium.
- Calculate the energy generated in M eV when 0.1 kg of ⁷Li is converted into ⁴He by proton bombardment. [Given masses of ⁷Li, ⁴He and ¹H in u are 7.0183, 4.0040 and 1.0081 respectively]

FM-10

FM-10